广州无限麦克风阵列特征

时间:2022年11月05日 来源:

    在NumLock键锁定时保持原有等号″=″功能,BackSpace键紧邻3*3数字小键盘以便纠错,原键盘字符键排列顺序保持不变;本技术的目的及其技术方案还可采用以下技术措施进一步实现。该键盘由物理键盘+触摸屏虚拟键盘两部分组成,物理键盘在QWERTYUIOP行中,以″O″,在ZXCVBNM行中以2个″M″和″<,″,使三行字符键右边对齐,实现单键区键盘内涵九宫格键盘,数字小键盘映射到内涵九宫格键区上,BackSpace键左边的等号″=″键不叠加复用,在NumLock键锁定时保持原有等号″=″功能,BackSpace键紧邻3*3数字小键盘以方便纠错,原键盘字符键排列顺序保持不变;内涵九宫格优化键盘以单区键盘实现台式机三区键盘的全部功能,节省出桌面空间给电容触摸屏,触摸屏与电容笔或电磁笔配合实现数理化公式手写输入,并经过手写识别软件将手写公式数字化;该键盘内置麦克风阵列,配合语音识别软件实现远场拾音,并具有降噪功能;该键盘的电容触摸屏上有映射希腊字母、符号、几何符号、逻辑符号、数理化特殊符号的虚拟键盘,通过触摸屏虚拟键盘快速输入数理化特殊符号,提升学生作业数字化的输入效率;该键盘的连接方式可以是有线方式连接,也可以是无线方式连接。根据麦克风阵列的拓扑结构,则可分为线性阵列、平面阵列、体阵列等。广州无限麦克风阵列特征

广州无限麦克风阵列特征,麦克风阵列

    基于双麦克阵列的产品生态构建更具优势麦克风阵列作为实现智能语音的必备硬件,可以说是人工智能感知的硬件基础。因此,麦克风阵列的布局,将深深影响人工智能产品的生态布局。首先,众所周知的是,谷歌是以生态见长的公司。比如,Android构建了整个移动互联网的生态基础。在谷歌从移动互联网向AI转型的时候,提出了“AIFirst”的口号,并推出了开源深度学习系统TensorFlow,这个系统被认为是人工智能领域的Android。那么,谷歌为什么在如此重视AI战略的时候,推出这款GoogleHome的智能家居产品,并且采用双麦克的方案呢?相信对于谷歌这样的公司,成本和技术绝不会是阻碍他们采用更好技术的原因。据业内人士分析,关键的就是上面提到的的适用性和落地的便捷性,可能让谷歌后选择了双麦克方案。谷歌布局整个智能硬件产业链,而非只打造一款爆款产品。现在做GoogleHome智能音响,以后也可能做电视、汽车等等,所以在软硬件选择上都会考虑更通用、更长远的方案。多麦克阵列对外观和结构的严苛要求,使得该方案的应用场景极为有限,不具备的适用性,以Google的远大抱负,显然会选择适应性更强的双麦克方案。目前,谷歌明确表示会部分开放对接的子系统。湖南未来麦克风阵列设计目前中远距离声音的获取主要依靠规模较大的麦克风阵列装置来获取。

广州无限麦克风阵列特征,麦克风阵列

    升压转换器u3的9脚、10脚、电容c14的一端、电容c15的正极、电容c16的一端、电感l2的一端、电感l1的另一端互相连接,电容c14的另一端、电容c15的负极、电容c16的另一端互相连接后接地,所述电感l2的另一端连接开关j2的3脚,开关j2的2脚连接插座j1的2脚,插座j1的1脚接地;稳压电源u4的1脚连接电容c19的一端后接入电源,稳压电源u4的2脚连接电容c19的另一端后接地,稳压电源u4的3脚连接电容c20的一端后接入电源,稳压电源u4的4脚连接电容c21的一端后接入电源,稳压电源u4的5脚接地,电容c20的另一端接地,电容c21的另一端接地;稳压器u5的1脚连接电容c17的负极、电容c18的一端后接地,稳压器u5的2脚连接电容c17的正极、电容c18的另一端后接入电源,稳压器u5的3脚接入电源;本实施例中,电源管理电路主要是提供系统所需的,5v以及正负12v电压;系统的输入电源由,升压转换器u3采用tps61230芯片实现,将电压升压至5v,给音频转换模块、语音增强模块供电;稳压器u5使用型号为,其将5v电压转至,给麦克风阵列供电;稳压电源u4使用型号为nr5d12的稳压电源实现,其将5v为±12v,为线放芯片和功放芯片供电;本发明的实施例中,在芯片对电压转换完成以后。

    麦克风阵列,是一组位于空间不同位置的全向麦克风按一定的形状规则布置形成的阵列,是对空间传播声音信号进行空间采样的一种装置,采集到的信号包含了其空间位置信息。根据声源和麦克风阵列之间距离的远近,可将阵列分为近场模型和远场模型。根据麦克风阵列的拓扑结构,则可分为线性阵列、平面阵列、体阵列等。(1)近场模型和远场模型声波是纵波,即媒质中质点沿传播方向运动的波。声波是一种振动波,声源发声振动后,声源四周的媒质跟着振动,声波随着媒质向四周扩散,所以是球面波。根据声源和麦克风阵列距离的远近,可将声场模型分为两种:近场模型和远场模型。近场模型将声波看成球面波,它考虑麦克风阵元接收信号间的幅度差;远场模型则将声波看成平面波,它忽略各阵元接收信号间的幅度差,近似认为各接收信号之间是简单的时延关系。显然远场模型是对实际模型的简化,极大地简化了处理难度。一般语音增强方法就是基于远场模型。近场模型和远场模型的划分没有的标准,一般认为声源离麦克风阵列中心参考点的距离远大于信号波长时为远场;反之,则为近场。设均匀线性阵列相邻阵元之间的距离(又称阵列孔径)为d,声源高频率语音的波长(即声源的小波长)为λmin。声源定位技术利用麦克风阵列计算声源距离阵列的角度和距离,实现对目标声源的。

广州无限麦克风阵列特征,麦克风阵列

    本实用新型涉及声学技术领域,具体而言,涉及一种便携式可视化麦克风阵列装置。背景技术:在某些隐蔽要求高的安保、安防等领域,对于中远距离声音获取途径的保密性要求很高。目前中远距离声音的获取主要依靠规模较大的麦克风阵列装置来获取,诸如申请公布号的发明专利,该设备的尺寸厚度较厚,携带不便,操作困难,很容易在安保安防中暴露设备的使用。技术实现要素:发明目的:本实用新型提供了一种便携式可视化麦克风阵列,旨在解决现有技术中麦克风阵列操作复杂,携带不便,容易暴露,隐蔽性差等问题。技术方案:为实现上述发明目的,本实用新型采用以下技术方案:一种便携式可视化麦克风阵列装置,包括包体,设置在包体内的印刷电路板、音频采集装置、视频采集装置、无线模块和供电装置,以及便携式操作终端;包体的正面设有一图像出孔,视频采集装置安装在印刷电路板上,且其镜头正对图像出孔,音频采集装置阵列式排布在印刷电路板上,无线模块分别与视频采集装置和音频采集装置电连接,供电装置为音频采集装置、视频采集装置和无线模块供电,便携式操作终端和无线模块无线电连接。可选的,印刷电路板上设有图像采集装置安装孔和声音出孔阵列。平面阵列拓扑结构三维麦克风阵列,即立体麦克风阵列,其阵元中心分布在立体空间中。湖南未来麦克风阵列设计

受使用时长及室内复杂环境等多种因素的影响,导致麦克风阵列接收信号的频率响应特性与理论值存在较大偏差。广州无限麦克风阵列特征

如今通信的各类行业都在不断的发展,比如智能家居,语音识别算法,机器人交互系统,降噪等等,可以看出现在通信技术已经到了全新的历史时期,技术变革的速率之快难以预计,未来的通信行业趋势必然朝着更具有应用力的方向发展,也必然满足用户更多的需求。通信有限责任公司(自然)企业必须及时掌握行业的新的动态和运营商的新的要求,只有这样才能不断推出新服务,确保在市场竞争中保持优先地位。随着我国通信行业大发展,程控数字化与全塑电缆普遍使用,通信建设任务大幅增加,原有体制内服务已无法满足电信建设需求,相应的有限责任公司(自然)企业应运而生。中美贸易摩擦可能导致智能家居,语音识别算法,机器人交互系统,降噪格局生变。而随着美韩市场5G率先加入,爱立信、诺基亚等有望先受益。但由于全球运营商经营面临压力,个别地区禁购中国设备事宜仍有转机。同时,自主可控更加紧迫,给北斗导航、天通通信、网络安全带来机会。广州无限麦克风阵列特征

深圳鱼亮科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在广东省等地区的通信产品中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,深圳鱼亮科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!

信息来源于互联网 本站不为信息真实性负责