高校纳米力学测试方法
采用磁力显微镜观察Sm2Co17基永磁材料表面的波纹磁畴和条状磁畴结构;使用摩擦力显微镜对计算机磁盘表面的摩擦特性进行试:利用静电力显微镜测量技术,依靠轻敲模式(Tapping mode)和抬举模式(Lift mode),用相位成像测量有机高分子膜-壳聚糖膜(CHI)的表面电荷密度空间分布等等除此之外,近年来,SPM还用于测量化学键、纳米碳管的强度,以及纳米碳管操纵力方面的测量。利用透射电子显微镜和原子力显微镜原位加载,观测单一纳米粒子链的力学属性和纳观断裂,采用扫描电镜、原子力显微镜对纳米碳管的拉伸过程及拉伸强度进行测等:基于原子力显微镜提出一种纳米级操纵力的同步测量方法,进而应用该方法,成功测量出操纵、切割碳纳米管的侧向力信息等。这些SFM技术为研究纳米粒子/分子、基体与操纵工具之间的相互作用提供较直接的原始力学信息和实验结果。纳米力学测试技术为纳米材料在航空航天、汽车制造等领域的应用提供了有力支持。高校纳米力学测试方法
用户可设计自定义的测试程序和测试模式:①FT-NTP纳米力学测试平台,是一个5轴纳米机器人系统,能够在绝大部分全尺寸的SEM中对微纳米结构进行精确的纳米力学测试。②FT-nMSC模块化系统控制器,其连接纳米力学测试平台,同步采集力和位移数据。其较大特点是该控制器提供硬。件级别的传感器保护模式,防止微力传感探针和微镊子的力学过载。③FT-nHCM手动控制模块,其配置的两个操控杆方便手动控制纳米力学测试平台。④带接线口的SEM法兰,实现模块化系统控制器和纳米力学测试平台的通讯。高校纳米力学测试方法纳米力学测试的结果可以为新材料的设计和应用提供重要参考。
纳米云纹法,云纹法是在20世纪60年代兴起的物体表面全场变形的测量技术。从上世纪80年代以来,高频率光栅制作技术已经日趋成熟。目前高精度云纹干涉法通常使用的高密度光栅频率已达到600~2400线mm,其测量位移灵敏度比传统的云纹法高出几十倍甚至上百倍。近年来云纹法的研究热点已进入微纳尺度的变形测量,并出现与各种高分辨率电镜技术、扫描探针显微技术相结合的趋势。显微几何云纹法,在光学显微镜下通过调整放大倍数将栅线放大到频率小于40线/mm,然后利用分辨率高的感光胶片分别记录变形前后的栅线,两种栅线干涉后即可获得材料表面纳米级变形的云纹。
微纳米材料研究中用到的一些现代测试技术:电子显微法,电子显微技术是以电子显微镜为研究手段来分析材料的一种技术。电子显微镜拥有高于光学显微镜的分辨率,可以放大几十倍到几十万倍的范围,在实验研究中具有不可替代的意义,推动了众多领域研究的进程。电子显微技术的光源为电子束,通过磁场聚焦成像或者静电场的分析技术才达成高分辨率的效果、利用电子显微镜可以得到聚焦清晰的图像, 有利于研究人员对于实验结果进行观察分析。纳米力学测试的结果可以为纳米材料的安全性和可靠性评估提供重要依据。
常把纳米力学当纳米技术的一个分支,即集中在工程纳米结构和纳米系统力学性质的应用面。纳米系统的例子,包括纳米颗粒,纳米粉,纳米线,纳米棍,纳米带,纳米管,包括碳纳米管和硼氮纳米管,单壳,纳米膜,纳米包附,纳米复合物/纳米结构材料(有纳米颗粒分散在内的液体),纳米摩托等。纳米力学一些已确立的领域是:纳米材料,纳米摩檫学(纳米范畴的摩檫,摩损和接触力学),纳米机电系统,和纳米应用流体学(Nanofluidics)。作为基础科学,纳米力学是以经验原理(基本观察)为基础。包括:1.一般力学原理;2.由于研究或探索的物体变小而出现的一些特别原理。纳米力学测试可用于研究纳米颗粒在胶体、液态等介质中的相互作用行为。电线电缆纳米力学测试厂家
利用大数据和人工智能技术,优化纳米力学测试结果分析,提升研究效率。高校纳米力学测试方法
AFAM 方法较早是由德国佛罗恩霍夫无损检测研究所Rabe 等在1994 年提出的。1996 年Rabe 等详细分析了探针自由状态以及针尖与样品表面接触情况下微悬臂的动力学特性,建立了针尖与样品接触时共振频率与接触刚度之间的定量化关系。之后,他们还给出了考虑针尖与样品侧向接触、针尖高度及微悬臂倾角影响的微悬臂振动特征方程。他们在这方面的主要工作奠定了AFAM 定量化测试的理论基础。Reinstaedtler 等利用光学干涉法对探针悬臂梁的振动模态进行了测量。Turner 等采用解析方法和数值方法对比了针尖样品之间分别存在线性和非线性相互作用时,点质量模型和Euler-Bernoulli 梁模型描述悬臂梁动态特性的异同。高校纳米力学测试方法
上一篇: 广州半导体纳米力学测试仪
下一篇: 广东大载荷划痕金刚石针尖定制价格